Posts

Travelers Rest

By Keith Lee Morris

A chilling fable about a family marooned in a snowbound town whose grievous history intrudes on the dreamlike present.

The Addisons-Julia and Tonio, ten-year-old Dewey, and derelict Uncle Robbie-are driving home, cross-country, after collecting Robbie from yet another trip to rehab. When a terrifying blizzard strikes outside the town of Good Night, Idaho, they seek refuge in the town at the Travelers Rest, a formerly opulent but now crumbling and eerie hotel where the physical laws of the universe are bent.

Researchers explore economical, environmentally friendly technology

Professors Chris Cole (left) and Philip Brown.

Professors Chris Cole (left) and Philip Brown.

With key support from the Walmart Foundation and its U.S. Manufacturing Innovation Fund, Clemson textile experts are working with the world’s most widely used fiber, polyester, to develop technologies that will make dyeing it more economical and environmentally friendly.

Chris Cole, a faculty member in materials science and engineering, has extensive experience in both textile and apparel design and fabrication, while her collaborator, Philip Brown, also a faculty member in materials science and engineering, is recognized nationally and internationally for his work in designing and extruding textile fibers.

The nearly $1 million award from the Walmart Foundation allows the research team to pursue three primary research objectives: reduce the amount of dyestuff required to color polyester; reduce the energy required to color polyester; and lower the amount of colored effluent from polyester dyeing processes. Effluent is the liquid waste remaining from the dyeing process, and as Cole has noted, “There’s a lot of dye used in dyeing polyester to be able to get the colors that we all know and love like our bright Clemson orange.”

The award was announced by the Walmart Foundation and the U.S. Conference of Mayors at the 2016 meeting of the U.S. Conference of Mayors in Washington, D.C. Clemson is one of five universities conducting research through this opportunity, which is focused on supporting research that strives to create new manufacturing technologies and to reduce the cost of producing goods in the U.S. with the ultimate goal of creating jobs that support America’s growing manufacturing base. Clemson’s award is supporting 2½ years of research.

Within Clemson’s Olin Hall is a unique machine that has enabled the research team to design a polyester fiber that will dye more easily. “The funding provided by the Walmart Foundation has allowed me to build this machine — something that has never been done before — and it’s phenomenal,” said Brown. “There’s only one in the world.” Researchers in the industry have attempted to dye polyester using copolymers, but due to fiber manufacturing technology limitations, they typically used a single polymer. This technology also suffered a very poor wash fastness unlike the technology Brown and his researchers have developed. “We might dye a fabric a brilliant orange, but after it was laundered a few times you could see the color was starting to fade with these other polymers,” said Cole. “Because of Dr. Brown’s expertise and the facilities we have at Clemson, we can now build fibers where we can take advantage of being able to get the dye in quickly with intense colors and excellent dye pickup by the fibers. We’re not leaving as much dye behind at the end of the cycle, but at the same time we’re going to be able to get the wash fastness and the light fastness that the commercial market requires.”

Materials science and engineering makes it a priority to get students involved in projects that provide them with hands-on research experience. “By being part of a major research project, students can see the techniques that we use, how to design a large project, how to build a team effectively for a large project and the communication skills you have to have,” said Cole. Another benefit is that students are introduced to the manufacturers who are their potential employers. With another award from the U.S. Manufacturing Innovation Fund announced this year, these two researchers are optimistic about expanding their research program to look at how they might develop polyester fibers that achieve a high level of water and oil repellency at lower economic and environmental cost.

Thin Ice

Assistant Professor of Art Todd Anderson is a printmaker, skilled at transferring beauty and wonder from landscapes onto paper. His most recent project, The Last Glacier, involved hiking more than 500 miles through Glacier National Park over the last six years.

Clemson architecture team develops a new way to build

A team of Clemson architecture students assemble Indigo Pine East, the first structure built using the sim[PLY] construction method. Off-the-shelf plywood is cut by CNC routers into interlocking tab-and-slot pieces that fit together to form a solid, tight frame. With the sim[PLY] method, digital cut files can be emailed to a CNC fabricator, then shipped flat-packed to the construction site, ready to be assembled by hand by unskilled laborers.

Clemson University’s School of Architecture is developing an innovative new construction method that is gaining worldwide attention for its potential market impact in rapid, low-tech sustainable housing.

Using the sim[PLY] Framing System, “With a click of the button, someone could order a custom-cut, flat-packed home online and construct it by hand with the help of their friends and neighbors in a matter of days,” said Kate Schwennsen, professor and director of the School of Architecture.

One of the sim[PLY] Framing System’s innovative advantages is its revolutionary interlocking tab-and-slot connection system (patent pending). Assembly is intuitive and easy; so buildings come together much like a 3D puzzle, using no nails, just steel zip ties and some screws. This means buildings can be disassembled just as easily, without causing structural damage.

“sim[PLY] is faster, safer, easier and more energy-efficient than traditional construction with power tools,” Schwennsen said.

sim[PLY] offers a rapid, low-tech construction solution with a profound reduction in a building’s total carbon footprint. Here’s how:

  • sim[PLY] uses locally sourced plywood and computer numeric control (CNC) fabrication.
  • Construction plans are digital and can be emailed anywhere there is a CNC controller.
  • Components can be pre-cut using off-the-shelf materials, pre-measured and flat-packed, requiring less transport space and smaller vehicles versus other forms of prefabricated structures.
  • Cut pieces lock into place on site with no power-operated tools or heavy equipment required.

sim[PLY]’s evolving impact:

  • A national Department of Defense (DOD) building contractor has looked at sim[PLY] for Rapidly Deployable Housing applications, such as for use in temporary military housing. sim[PLY] is being considered as a potentially cost-saving opportunity to build better structures faster, safer and using less energy on the jobsite.
  • sim[PLY]­ ’s built-in ease of construction makes it an ideal framing model for various types of do-it-yourself housing. Think: tiny homes. To explore this popular housing trend, Clemson’s architectural students have designed an energy efficient sim[PLY] tiny home prototype that could be structurally framed in just one day’s time.
  • Timber is one of South Carolina’s most important cash crops, with an economic impact of $20 billion, according to the Forestry Association of South Carolina. sim[PLY]’s use of plywood would create both a positive economic and environmental impact here at home. Beyond causing a greater demand for timber, wide acceptance of the sim[PLY] process would mean a more diverse and robust use of forest resources; plywood manufacturing, unlike that of lumber, makes use of older, more mature trees.
  • Architectural communities in Italy, Austria and Germany – countries considered to be worldwide leaders in wood construction and sustainable building – have expressed interest in sim[PLY]. Overseas and in the U.S., sim[PLY]’s sustainable performance benefits are compelling.

The sim[PLY] rafter assembly for a CropStop community kitchen.
Image Credit: Clemson University School of Architecture

An example of a sim[PLY] structure in use is the CropStop community kitchen on Lois Avenue in Greenville. The building makes it possible for crop owners to better process their harvests to meet local demand for fresh farm-to-table foods. A new universal CropStop prototype was designed in the fall and could impact global agrarian economies where there is interest in this concept for sustaining local growers and evolving farm communities.

sim[PLY] was first developed by Clemson architectural faculty and students as part of their entry in the 2015 Department of Energy Solar Decathlon competition. While their end result was a solar-powered, energy-efficient home, it was just the beginning for the innovative framing system that is proving it has a marketable life of its own.

Architecture student Paul Mosher examines sim[PLY] pieces cut by a Computer Numeric Control device. Sim[PLY]’s interlocking connection technology is patent-pending.

“sim[PLY] is an ongoing, evolving project,” Schwennsen said. “New teams of students are being challenged to optimize the design and create newer, smarter versions to meet the needs of a variety of commercial, government and end-user market applications.”

The School of Architecture and its faculty continue to be leaders in integrating critical and creative research into its nationally ranked accredited graduate program.

The sim[PLY] team includes faculty inventors Dan Harding, Dustin Albright, Dave Pastre, Ulrike Heine, Vincent Blouin and Ufuk Ursoy; and contributing student inventors Anthony Wohlers, Michael Stoner, Eric Balogh, Tyler Silvers, Clair Dias, Alison Martin, Jon Pennington, Jeff Hammer, Will Hinkley, Justin Hamrick, Alexandra Latham, Neely Leslie, Daniel Taylor, David Herrero, Rebecca Mercer, Russell Buchanan, Amelia Brackmann, Paul Mosher, Allyson Beck and Alex Libengood.